Clark, J. R., Appleman, D. E. \& Papike, J. J. (1969). Miner. Soc. Amer. Spec. Pap. 2, 31-50.
Fleet, M. E. (1974). Amer. Min. 59, 1083-1093
Fleet, M. E. (1975). Acta Cryst. B31, 183-187.
Gibbs, G. V., Haml, M. M., Loulsnathan, S. J., Bartell, L. S. \& Yow, H. (1972). Amer. Min. 57, 15781613.

Louisnathan, S. J. \& Gibbs, G. V. (1972a). Amer. Min. 57, 1614-1642.

Louisnathan, S. J. \& Gibbs, G. V. (1972b). Amer. Min. 57, 1643-1663.
Novak, G. A. \& Gibbs, G. V. (1971). Amer. Min. 56, 791825.

Pauling, L. (1929). J. Amer. Chem. Soc. 51, 1010-1026.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd. ed. Ithaca: Cornell Univ. Press.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.

Acta Cryst. (1975). B31, 1097

The Crystal Structure of the γ-Lactone of 2,2-Dimethyl-3,4-dihydroxy-5-phenylvaleric Acid: a Degradation Product of Neoantimycin

By Ettore Benedetti and Paolo Ganis
Laboratorio di Chimica Generale e Inorganica, Università di Napoli, Via Mezzocannone 4, 80134-Napoli, Italy Gabriella Bombieri
Laboratorio di Chimica e Tecnologia dei Radioelementi del C.N.R., Via Vigonovese 52, 35100-Padova, Italy
Luciano Caglioti
Istituto di Chimica Organica, Università di Roma, Roma, Italy
and Gabriel Germain
Laboratoire de Chimie Physique et Cristallographie, Bâtiment Lavoisier, Université de Louvain, Place L. Pasteur 1, Lowvain-la-Neuve, Belgium

(Received 7 November 1974; accepted 10 December 1974)

Abstract

The γ-lactone of 2,2-dimethyl-3,4-dihydroxy-5-phenylvaleric acid, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$, crystallizes in the space group $P 2_{1}$ with $a=8.373$ (4), $b=6.373$ (3), $c=11 \cdot 234$ (5) $\AA, \beta=97 \cdot 85(8)^{\circ}, Z=2$. Data for 820 reflexions were collected on a Siemens automated diffractometer. The crystal structure was solved by direct methods; refinement was carried out by full-matrix least-squares procedures including anisotropic thermal parameters. The lactone ring is puckered at the β-carbon atom which deviates by about $0.47 \AA$ from the best plane formed by the four remaining atoms. The relative configuration of the two adjacent asymmetric carbon atoms of the molecule is $R R$ (or $S S$). The molecules are held together in the crystal by hydrogen bonds ($\mathrm{O} \cdots \mathrm{O} 2.76 \AA$) along twofold axes.

Introduction

Recently, the structure of neoantimycin, an antibiotic obtained from Streptoverticillum orinoci has been determined by chemical and spectroscopic methods (Cassinelli, Grein, Orezzi, Pennella \& Sanfilippo, 1967; Caglioti, Misiti, Mondelli, Selva, Arcamone \& Cassinelli, 1969). Acidification of an alkaline solution of hydrolysed neoantimycin yields the γ-lactone of 2,2-dimethyl-3,4-dihydroxy-5-phenylvaleric acid

The molecule contains two adjacent asymmetric carbon atoms. The relative configuration of these atoms has not been determined so far. In order to solve this configurational problem and to gain more information on the structure of the antibiotic itself we undertook the X-ray single-crystal analysis of the title compound.

Experimental

Accurate cell constants were obtained by a leastsquares treatment of 15 high-angle reflexions recorded with $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$, F.W. 220.3, space group $P 2_{1}, a=8 \cdot 373$ (4), $b=6.373$ (3), $c=11 \cdot 234$ (5) $\AA, \beta=97 \cdot 85^{\circ}(8), U=593.8$ $\AA^{3}, D_{m}=1.23 \mathrm{~g} \mathrm{~cm}^{-3}, D_{c}=1.233 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$,
$\mathrm{Cu} K \alpha, \lambda=1.5418 \AA$. Crystal size: $0.2 \times 0.4 \times 0.2 \mathrm{~mm}$. Crystal shape: needle.

Intensity data were collected on a computer-controlled Siemens A.E.D. four-circle automated diffractometer, using nickel-filtered $\mathrm{Cu} K \alpha$ radiation $(\lambda=$ $1 \cdot 5418 \AA$).
Reflexions with $2 \theta<100 \cdot 0^{\circ}$ were scanned in the $\theta-2 \theta$ mode and with the five-points measuring procedure. 968 independent reflexions were measured of which 820 had $I>2 \sigma(I)$ and were used in the refinement.

The data were corrected for Lorentz and polarization effects but not for absorption.

An overall temperature factor ($B=3.9 \AA^{2}$) and scale factor were calculated (Wilson, 1942) and used to compute normalized structure factors (E) (Karle \& Hauptman, 1956). The statistics of the E 's confirmed a non-centrosymmetric structure. The structure was solved by weighted multisolution tangent refinement (Germain, Main \& Woolfson, 1971). The 160 largest E 's were used.

The starting set of phases selected by iterative procedure (CONVERGE) was:
\(\left.\begin{array}{ll}h k l \& Phase

21 \overline{5} \& 0

507 \& 0

021 \& \pi / 4 (enantiomorph-fixing)

041 \& \pi / 4,3 / 4 \pi, 5 / 4 \pi, 7 / 4 \pi

525 \& \pi / 4,3 / 4 \pi, 5 / 4 \pi, 7 / 4 \pi

645 \& \pi / 4,3 / 4 \pi, 5 / 4 \pi, 7 / 4 \pi\end{array}\right\}\)| origin |
| :--- |
| fixing |

Of the 64 possible solutions judging by probability characteristics only one set of phases seemed to be correct. The corresponding E map revealed the whole structure apart from the hydrogen atoms.

The structure was then refined by a total of 11 fullmatrix least-squares cycles; anisotropic thermal factors were assigned to all the non-hydrogen atoms after the sixth cycle when the conventional R value $\left(=\sum| | F_{o} \mid-\right.$ $\left|F_{c}\right||/ \Sigma| F_{o} \mid$) was $0 \cdot 12$. A difference Fourier synthesis calculated after the 11 th cycle of refinement when the R value was 0.083 revealed the approximate positions of the 16 hydrogen atoms of the asymmetric unit. However, they were included in the successive calculations in the geometrically calculated positions and with isotropic thermal factors equal to the isotropic thermal factor of the carrier atom; they were not refined. The R index dropped to 0.057 . The function minimized was $\sum\left(w\left|F_{c}-k F_{o}\right|\right)^{2}$.

The form of Cruickshank's (1949) weighting function was:

$$
w=\left(0 \cdot 11111+1.92 \times 10^{-3} F_{o_{\min }}+3 \cdot 12 \times 10^{-6} F_{v_{\max }}^{2}\right)
$$

The atomic scattering factors were calculated from the analytical constants given by Moore (1963). No corrections were included for anomalous scattering. The final positional and thermal parameters together
with the corresponding standard deviations (for the non-hydrogen atoms) are listed in Table 1.*

* The table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30826 (3 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Final atomic parameters with their estimated standard deviations
(a) Positional parameters

	x / a	$y!b$	z/c
C(1)	$0 \cdot 1247$ (6)	$0 \cdot 3260$ (8)	-0.2300 (4)
C(2)	$0 \cdot 1996$ (6)	0.6997 (10)	-0.1853 (5)
C(3)	$0 \cdot 1764$ (5)	$0 \cdot 4837$ (8)	-0.1300 (4)
C(4)	0.0456 (5)	$0 \cdot 5085$ (7)	-0.0481 (4)
C(5)	$0 \cdot 2878$ (5)	0.5358 (9)	0.0734 (4)
C(6)	$0 \cdot 3222$ (5)	0.4244 (8)	-0.0378 (4)
C(7)	$0 \cdot 3585$ (6)	0.4451 (10)	$0 \cdot 1939$ (5)
C(8)	$0 \cdot 3259$ (5)	0.5774 (9)	$0 \cdot 2990$ (4)
C(9)	$0 \cdot 4009$ (7)	0.7706 (11)	0.3204 (5)
$\mathrm{C}(10)$	$0 \cdot 3700$ (9)	0.8956 (12)	$0 \cdot 4164$ (6)
C(11)	$0 \cdot 2654$ (9)	0.8315 (15)	$0 \cdot 4907$ (5)
C(12)	$0 \cdot 1906$ (8)	0.6371 (15)	$0 \cdot 4712$ (5)
C(13)	$0 \cdot 2222$ (6)	$0 \cdot 5160$ (13)	0.3761 (5)
$\mathrm{O}(1)$	$0 \cdot 3449$ (4)	$0 \cdot 2036$ (6)	-0.0216 (3)
$\mathrm{O}(2)$	-0.0987 (3)	$0 \cdot 5143$ (7)	-0.0801 (3)
$\mathrm{O}(3)$	$0 \cdot 1089$ (3)	$0 \cdot 5292$ (6)	0.0643 (3)
$\mathrm{HO}(1)$	$0 \cdot 317$	$0 \cdot 106$	-0.078
$\mathrm{HC}(1) 1$	$0 \cdot 217$	$0 \cdot 304$	-0.285
$\mathrm{HC}(1) 2$	0.015	0.385	-0.285
$\mathrm{HC}(1) 3$	$0 \cdot 094$	$0 \cdot 177$	-0.192
HC(2) 1	$0 \cdot 296$	$0 \cdot 695$	-0.238
$\mathrm{HC}(2) 2$	$0 \cdot 223$	$0 \cdot 816$	-0.117
$\mathrm{HC}(2) 3$	0.089	0.743	-0.244
$\mathrm{HC}(5)$	$0 \cdot 327$	0.700	0.070
HC(6)	$0 \cdot 429$	$0 \cdot 490$	-0.069
$\mathrm{HC}(7) 1$	$0 \cdot 307$	0.290	0.202
$\mathrm{HC}(7) 2$	$0 \cdot 488$	0.428	$0 \cdot 197$
$\mathrm{HC}(9)$	$0 \cdot 484$	0.827	$0 \cdot 260$
$\mathrm{HC}(10)$	$0 \cdot 432$	1.046	0.433
HC(11)	0.238	0.933	0.564
HC(12)	$0 \cdot 109$	0.582	$0 \cdot 532$
$\mathrm{HC}(13)$	$0 \cdot 161$	0.366	$0 \cdot 362$

(b) Thermal parameters in the form:

$\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}\right.\right.$						
	$\left.\left.+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$					
	B_{1}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
C(1)	$4 \cdot 6$ (2)	$4 \cdot 4$ (2)	$5 \cdot 6$	-0.8	$0 \cdot 8$ (2)	$1 \cdot 0$ (2)
C(2)	$5 \cdot 6$ (2)	$4 \cdot 6$ (3)		-1.0 (2)	$0 \cdot 9$ (2)	
C(3)	$3 \cdot 6$ (2)	$2 \cdot 9$ (2)	$4 \cdot 3$ (2)	-0.6 (1)	$0 \cdot 9$ (1)	-0.6 (2)
C(4)	$3 \cdot 9$ (2)	$2 \cdot 1$ (2)	$5 \cdot 3$ (2)	0.0 (2)	-0.1 (1)	$0 \cdot 3$ (2)
C(5)	$2 \cdot 5$ (2)	$4 \cdot 4$ (2)	$6 \cdot 3$ (2)	$0 \cdot 1$ (2)	0.7 (1)	-0.3 (2)
C(6)	$3 \cdot 5$ (2)	$4 \cdot 0$ (2)	$5 \cdot 7$ (2)	-0.5 (2)	1.7 (2)	-0.7 (2)
C(7)	$4 \cdot 2$ (2)	$5 \cdot 2$ (3)	$5 \cdot 9$ (3)	$0 \cdot 4$ (2)	-0.1 (2)	
C(8)	$3 \cdot 9$ (2)	$5 \cdot 8$ (3)	$4 \cdot 4$ (2)	0.5 (2)	$0 \cdot 2$ (2)	
C(9)	$6 \cdot 0$ (3)	$5 \cdot 9$ (3)	$6 \cdot 3$ (3)	-1.2 (3)	0.8 (2)	-0.3 (3)
$\mathrm{C}(10)$	$8 \cdot 7$ (4)	$5 \cdot 9$ (3)	$6 \cdot 5$ (3)	-0.6(3)	-0.4 (3)	-0.7 (3)
C(11)	9.0 (4)	$8 \cdot 6$ (5)	$5 \cdot 1$ (3)	1.9 (4)	0.7 (3)	-0.2 (3)
C(12)	$7 \cdot 0$ (3)	$9 \cdot 2$ (5)	$5 \cdot 7$ (3)	0.4 (3)	$1 \cdot 1$ (2)	0.7 (3)
$\mathrm{C}(13)$	$5 \cdot 4$ (2)	$7 \cdot 0$ (3)	$5 \cdot 2$ (2)	$0 \cdot 0$ (3)	-0.2 (2)	0.7 (3)
$\mathrm{O}(1)$	$3 \cdot 9$ (1)	$3 \cdot 9$ (2)	$7 \cdot 2$ (2)	$0 \cdot 8$ (1)	1.4 (1)	-0.6 (1)
$\mathrm{O}(2)$	$3 \cdot 4$ (1)	$4 \cdot 2$ (2)	$7 \cdot 2$ (2)	$0 \cdot 3$ (1)	$0 \cdot 3$ (1)	-0.2 (2)
$\mathrm{O}(3)$	$2 \cdot 9$ (1)	$4 \cdot 1$ (1)	$5 \cdot 9$ (2)	$0 \cdot 3$ (1)	$1 \cdot 2$ (1)	$0 \cdot 0$ (1)

Description of the structure

The most important conformational parameters of the molecule are listed in Table 2 and reported in Fig. 1. Most of them do not require any comment since they are quite normal. The bond distances $\mathrm{C}(5)-\mathrm{O}(3) 1.488$ \AA and $\mathrm{C}(10)-\mathrm{C}(11) 1 \cdot 354 \AA$ are slightly longer and shorter respectively than the usual values; no specific explanation, apart from casual errors in the intensity data, could be suggested for these deviations. Noteworthy among the bond angles is the divergence from the tetrahedral value of the angles $C(1)-C(3)-C(6)$
$\left(117^{\circ}\right)$ and $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)\left(118^{\circ}\right)$ due to the strain imposed by the non-bonded interactions $\mathrm{C}(1) \cdots \mathrm{O}(1)$ and $\mathrm{O}(1) \cdots \mathrm{C}(7)$. Some bond angles close to 100° in the five-membered ring are not unexpected. The conformation of the five-membered ring shows that $C(6)$ is puckered out of the mean plane $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)-$ $C(5)$ at a distance of $\sim 0.47 \AA$.* The internal rotation

[^0]Table 2. Molecular geometry

Bond distances (\AA)	
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.521(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.534(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.534(6)$
$\mathrm{C}(4)-\mathrm{O}(2)$	$1.216(5)$
$\mathrm{C}(3)-\mathrm{C}(6)$	$1.536(6)$
$\mathrm{C}(4)-\mathrm{O}(3)$	$1.305(5)$
$\mathrm{C}(5)-\mathrm{O}(3)$	$1.488(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.499(7)$
$\mathrm{C}(6)-\mathrm{O}(1)$	$1.427(7)$
$\mathrm{C}(5)-\mathrm{C}(7)$	$1.517(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.506(8)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.389(9)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.391(9)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.354(10)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.390(13)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.381(10)$
$\mathrm{C}(13)-\mathrm{C}(8)$	$1.363(7)$

Bond angles (${ }^{\circ}$)		Internal rotation angles (${ }^{\circ}$)	
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$109 \cdot 4$ (2)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	-40
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$111 \cdot 1$ (2)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	142
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(6)$	$117 \cdot 1$ (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	79
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$106 \cdot 8$ (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	261
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$	111.2 (2)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{O}(1)$	-28
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)$	$100 \cdot 7$ (2)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	209
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	$126 \cdot 0$ (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{O}(1)$	206
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	111.3 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	83
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{O}(3)$	122.7 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(7)$	-23
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(5)$	$110 \cdot 0$ (1)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(5)$	4
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$103 \cdot 6$ (2)	$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	-24
$\mathrm{O}(3)--\mathrm{C}(5)-\mathrm{C}(7)$	$108 \cdot 5$ (2)	$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(7)$	210
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	$117 \cdot 8$ (2)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(5)$	185
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$	113.5 (2)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(3)$	33
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(3)$	$102 \cdot 8$ (2)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$	270
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(3)$	114.0 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$	-31
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	$113 \cdot 4$ (2)	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	17
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120 \cdot 5$ (3)	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	196
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	122.4 (3)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	-67
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.0 (3)	$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	153
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120 \cdot 7$ (3)	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	30
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119 \cdot 3$ (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	176
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119 \cdot 2$ (3)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	-67
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$122 \cdot 7$ (3)	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-70
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	$117 \cdot 1$ (3)	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	110

Fig. 1. A view of the molecule as seen along the [010] direction with some final geometrical parameters.

Fig. 2. Mode of packing of the title compound along the [010] direction; broken lines indicate the hydrogen-bond distances.
angles $\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{O}(1)$ and $\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$ are $\sim\left|40^{\circ}\right|$ and $\sim\left|28^{\circ}\right|$ which correspond to a nearly eclipsed conformation, and are related to the large bond angles $C(1)-C(3)-C(6)$ and $C(7)-C(5)-C(6)$ discussed above. The bond $\mathrm{C}(7)-\mathrm{C}(8)$ is trans to $\mathrm{C}(6)-\mathrm{C}(5)$ [the internal rotation angle $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ is $\sim 176^{\circ}$] and the phenyl ring is in an almost skew conformation with respect to the bond $C(7)-C(8)[C(5)-$ $\left.C(7)-C(8)-C(13) \sim 110^{\circ}\right]$ as is usually found. The relative configuration of $\mathrm{C}(6)$ and $\mathrm{C}(5)$, the two asymmetric atoms of the molecule, is $R R$ (or $S S$), following the nomenclature of Cahn, Ingold \& Prelog (1956).

Fig. 2 shows a projection of the structure of the title compound along the b axis.

Molecules related by twofold axes at $x=0, z=0$, are linked by hydrogen bonds between the carbonyl oxygens of molecules in $x y z$ and the carboxylic oxygens of molecules in $\bar{x}, \frac{1}{2}+y, \bar{z}$. The hydrogen-bond length
$\mathrm{O}(2) \cdots \mathrm{H}-\mathrm{O}(1)$ is $2.76 \AA$. There are no other particularly short contacts $<3.6 \AA$ between the molecules.

References

Caglioti, L., Misiti, D., Mondelli, R., Selva, A., Arcamone, F. \& Cassinelli, G. (1969). Tetrahedron, 25, 21932221.

Cahn, R. S., Ingold, C. K. \& Prelog, V. (1956). Experientia, 12, 81-94.
Cassinelli, G., Grein, A., Orezzi, P., Pennella, P. \& Sanfilippo, A. (1967). Arch. Mikrobiol. 55, 358-368.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65-82.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Karle, J. \& Hauptman, H. (1956). Acta Cryst. 9, 635651.

Moore, F. H. (1963). Acta Cryst. 16, 1169-1175.
Wilson, A. J. C. (1942). Nature, Lond. 150, 151-152.

[^0]: * The equation of the best mean plane referred to the crystallographic axes is $-0.0018 X-0.9907 Y+0.1353 Z=$ $-3 \cdot 2648$. (Deviations from the plane are: C(3) $0.011, \mathrm{C}(4)$ $-0.020, O(3) 0.020, C(5)-0.011 \AA$.)

